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The paper deals with the problem of compression of a plane containing a 
crack and a circular inclusion. The inclusion and the plane have different 
Poisson’s ratios, but the same shear modulus. The homogeneous compressive 

load at infinity is parallel to the direction of the cut. Analytic solutions of 
the elastic problems for the cases of a free and a partly compressed crack are 
given, the stress intensity at the tips are found and the character of the crack 
propagation in such a model studied. The results obtained agree with the ex- 
perimental data obtained during fracture of concrete. 

Compressive fracture was studied from the point of view of brittle fracture by 
Cherepanov. The pinch effect was analyzed in cl], while in [2] the author applied to 
the phenomenon of a mine shock the problem of a crack in a homogeneous elastic plane 
under the action of a compressive load, with an overlap of the edges and an arbitrary 

law of friction operating between these edges. 
In composite materials which can be represented in the form of a matrix with ran - 

domly distributed inclusions, the cracks propagate in the direction parallel to the line 

of action of the compressive load. It is therefore natural to consider the following prob- 

lem . An elastic plane with a cut and an elastic circular inclusion is compressed at infi- 
nity along the direction of the cut. Without an inclusion, the crack will not grow. In 
the presence of an inclusion, stress concentrations will appear at the crack tips and the 

crack may begin to grow. 
It should be noted that the influence of other type defects, namely the growth of 

cracks originating at the pores in a matrix, was studied e. g. in [3,4]. 
A similar model was investigated earlier in connection with tensile fracture of fi - 

brous composites (see e. g. [5,6]). The most general consideration of the problem is 
given in [7] where a numerically solvable singular integral equation is given for the de- 
rivative of a function equal to the value of the opening between the crack edges. 

1. Solution of the elastic problem. Let us consider an elastic plane 
OXY containing a cut along the segment [a, b] of the OX- axis and a circular inclu- 

s = (z, 1 z - ih 1 < R}, z = I + iy, h>O,R>O 

We shall assume that the cut edges are stress free, that continuous forces and displace - 

ments are present at the boundary L of the inclusion and, that a homogeneous corn - 
pressive stress acts at infinity in the direction of the OX- axis. This leads to the follo- 

wing boundary value problem: z E L: [pi,] = [Ui] = 0 
z E [a, b]: 

(1.1) 
p 12 = P22 = 0 

z - 00: Pll- P < 0, PI2 - 0, p22 - 0 
(1.2) 
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Here Pij and Ui are the components of the stress tensor and displacement vector, res - 
pectively , and [a denotes the jump in the value of the function during the passage 

across the corresponding line. 

Let us introduce the Kolcsov -Muskhelishvili potentials: 92 and $i for S, ‘PO and 
q0 for the matrix, c$’ = pz I 4, I)” = -pz / 2 for the stressed state at infinity. We 
set ‘~0 = v” + ‘pr, @, = $” + $r. Following the idea of Sherman [8], we express the 

potentials in terms of functions holomorphic outside the cut 

‘Fl, zigs 
‘p= ‘i+ I 

-‘Pi-(O”+C+D, ZES 
(1.3) 

~I,-~EG--EEC~, z~S 
- - 

9= oi - EG - EGO + “$;I” , ZES 

G(z) =2+ \ Gs+i’;’ ds 
L 

GO(z) =&\ “;ls;‘PD’ds= 

L 1 
1 
Fiph, zES 

+pfP 

z-ih ’ ZES 

vi - v 

x -- 1c. 
a= z= 

r_- (plane deformation) 

Xi + I 
G (plane stressed state) 

Here vi and v are the Poisson’s ratios of the inclusion and the matrix, respectively, 
C and D are constants determined from the condition of uniqueness of the displace - 
merits, and cp (m) = II, (ca) = 0. 

Using (1.2)) we obtain the boundary value problem for the outside of the cut In, 61 

(D+~+&‘+F+E??‘+E~=O (1.4) 

CD = cp’, Y =qI’, aJ (cm) = 0 (z-2), Y (ce) = 0 (z-2) 

Outside the circle s , we have 

G (z) = (p - ih + & - Rs a)(ih) 
- q~ (ih) + z-_ (1.5) 

For the usual range of values of the Poisson’s ratio ‘Ia < v < Vz , we have: in 
the case of plane deformation ‘1s < a < rf2, and in the case of a plane state of stress 
we have II6 6 E < 1/r. A set of the Poisson’s ratios characteristic of e. g. concrete, 
yields the values of e ranging from 0.08 to 0.15. For this reason we shall assume a 
to be small and seek a solution of the problem (1.4) in the form of a series in powers 

Of E 
@(Z, E) = 5 an (2) En, Y(Z, E) = ; y, (2) E” 

n=1 n=1 
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Then for each term of that series we have the well known boundary value problem 

rD,+iIin+tq+YI+=-q 

The function G, is known for n = 1 , and for 
@,_, into (1.5). 

We have the following recurrence relation 

b 
1 

Q’n (‘) = - 2ni.X (2) s 
a 

n > 1 we can find G,_i by substituting 

for Q)n : 

x (t) Gi_, (t) 
t-z dt 

,Y (z) 
X(Z)==~/(Z--a)(~--_), lim y=l 

z--tm 

Any number of terms of this series can be obtained in finite form. This condition of 
convergence in the HtSlder space with index 1/a is easily obtained (see [9], Sect. 133). 

The condition has the form FA < 1 where A is a constant depending on the geometri- 

cal parameters of the problem 

d=(++c”,.)+$(+ +21’1)[1+21/w(~+3]X 
1-P 

VI + az/h2 + 
paJf/8 2 

l+(,+ II R 1 
, P=h’ 8=x 

( I denotes the length of the cut) 
When h < R, then h should be replaced by v/h2 + a2. 

It should be noted that for short length cuts and for cuts away from the inclusion, 
A is small, i. e. in these cases the condition of convergence still holds when ,E are not 

small ; at small E the convergence becomes rapid. Therefore, in what follows, we 

shall limit ourselves to the first approximation 

&PR’2 

{ 
x (2) 

@=4x(z) (zf 
(2ih + a f b) (z + ih) - 2 (ih + a) (ih + b) 

2X (- ih) (z + ih)2 1 

Now we can write all the remaining functions. We shall only give the formulas for the 

stress concentration factors which will be needed later 

(a + ih) Ku = (b + ih) Kb = - 
spR2’1/2n (b - a) 

4 v(ih+ a) (ih + b) 
(1.7) 

K”sb=KF*b-- tK a. b 
II 

The approximate solution obtained has a simple physical meaning. The cut in the in - 
finite homogeneous plane is acted upon by a stress field which arises in a plane with an 
inclusion but without a cut, with the potentials 

@=O, y = - &“’ = 
EPR2 

2 (z - ih)2 (1.8) 

Obviously, such an approximation holds for a cut sufficiently distant from the inclusion, 
for any combination of the elastic models and for any shape of the inclusion. The poten- 
tials of the corresponding state of stress can be written in the form 

CD = & + 0 (z-y, Y = & + 0 (z-3) 
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The term proportional to 0s produces in the boundary condition a term of order 0 (Z-S), 
and the term pro~rtional to YB produces a term of order 0 (z-2). Therefore, in the 
first approximation it is sufficient to consider the potentials of the form (1.8). By in- 
specting the dimensions we find that Y* = kpRZ where R is the characteristic size 
of the inclusion and k is a coefficient depending on the form and on the elastic moduli. 
Such representations was used in [lo] to account for the influence of a unit cut, in the 

investigation of a plane with a doubly periodic system of cuts. 

2. Anolyrfr of tht rolution. The cut edges must not overlap if the solu- 
tion (1.6) is to have physical meaning. From the equations Kra = X,b = 0, we obtain 

a=b (2.1) 

b = a, ‘a2 - 3hz) h’& -. 302 9 I++ 
(2.2) 

b (b* A 3h*) 
a= h2-3b2 f Ibl>& 

(2.3) 

Let us set ) for definiteness, E > 0, i. e. yi > v (such a relation holds for heavy concre- 
tes). Then the condition Kra 2 0 and K, b > 0 yields the following two admissible , 
regions for the cut tips: 

Figure 1 depicts these regions in the 

plane of variables b, a _ The lines 
a,, a2 and as are branches of the curve 
defined by (2.2), and br, b,, bs are 
defined by (2.3) . The admissible re - 

gions are shaded. 

Fig.1 

The local state of stress at the cut 
tips is a combination of tensile stress 
and transverse shear. When the cut 
moves away from the inclusion or ap- 

proaches the OX - axis, the quantities 

KIfa and K,rb ( i. e. the contributions 
of the shear to the local state of stress 
at the tips tend to zero. In the particu- 

lar case of h = 0 (the cut lies at the extension of the diameter) we have 

Xnyb z.z K;pb, 4 daSbKa = 4 v’ab3Kb = -cpR2 v2n (b - a) 

In what follows we shall consider, without loss of generality, the cuts for which 
b > 1 n I>, 0. We have for these cuts 1 Ka 1 > 1 Kb 1. If we adopt the conditions of 

fracture in the form 1 Ka 1 = K,, 1 Ktr 1 = Kc wnere & is the material constant of 

the matrix, then the condition of fracture will first be fulfilled at the tips z = a. The 
critical load is found from the formula 

-2h-, I( 
aa -+- h2)3 (b2 + h2)l”’ 

P” CR% v2n (6 .- a) 
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For small length cracks the numerator in the above expression can be replaced by as+@ 
The critical load has the following minimum value for all admissible cuts: 

4K,h I/K 

Pmin = - 
,Ra -r/w 

We note that under the formulation used here the crack changes its initial direction 
after the critical load has been reached. In a real material the cracks grow along the 
line of application of the load, and this can be explained by the presence of many inc- 

Kusions. We can consider the following symmetric problem as the simplest model. We 
have two identical inclusions. The initial cut lies on a line passing through the middle 

of the segment connecting the centers of the inclusions, in the direction perpendicular 

to this segment. In this case it is clear that we have, within the same accuracy, 

K Gb = 2K,%b (2) 

where KcLla,b are the stress concentration coefficients at the cut tips in the symmetric 
problem. By symmetry, the cut will grow in its initial direction, The regions within 

which free cuts may exist, remain as before. 
The equation KIa = KIb has two solutions (at b > 1 a 1 > 0 ) : 

a=b, a=a,(b)=h(b+h v’q/(@b-h) 

For small cracks we have Kin > K, b, therefore in the region a4 < a < b we have 

Kf > 0 v while in the regioli a, < a < a4 , Kla’< 0 . We have the following relations: 

3K; K'I' 
aa=- 2(b_*) <a, q$= Z(b:a) >O 

i.e. the quantity KIO increases with increasing b and attains its maximum value when 
the cut is semiinfinite 

erR2 

I 

a3 - s&2+ (6 + @)“‘” 

I 

1ts 
K’+-li z 

(a2 + @y 

Similarly, the quantity KIb as a function of a , attains its maximum on the line al(b) 

Q = + l/,epRZ (@ - 34 [2na3 (h2 - a2)3 (6 -f- h2)-91” 

Since Krfl = o when a = b and a = al (b), it follows that Kin, as a function of a , 
attains a maximum on at least one line lying between the above lines. Similarly, Kfb 
as a function of b, decreases monoton~sly at sufficiently large 6 . 

The properties of the stress concentration coefficients given above imply the follo- 
wing qualitative characteristics of the crack growth in the system in question. When 

the critical load is reached, the crack may be found to be in a stable or unstable state. 
In the first case the crack will increase instantaneously in length and pass into another 
stable state. Any further increase in its length will require additional load. 

Since Zila = 0 on the line a = al (b), the crack cannot cross this line, i. e. its 

left tip is retarded. The right tip grows without bounds with increasing load (but in a 

stable manner). 

9, Solution of the problem of P partly cloted cut. Ifthecondi- 
tion a < a1 (b) holds for the initial cut, then the cut will be partly closed. The closed 
part in which the relative displacement of the edges in the only feature, is adjacent to 
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the left tip. We deal with this case by solving the problem of a partly closed cut. We 
shall assume that the cut edges are closed on [a, c] and stress free on [c, b] . The geo- 
metry of the inclusion and the cut follows that of Sect. 1. The condition (1.2) holds 

on Ic, bl , and on [u, C] we adopt the condition of frictionless overlap 

[P$ = [Paal = I%21 = 0, PI2 = 0 (3.1) 

Since the continuation formulas (1.3) are governed only by conditions (1.1) , at the 
inclusion boundary, they, remain unchanged. 

Following [2], we introduce the function Q = z@’ + Y, and express the stresses 
and displacements in terms of this function. 

From the first equations of (3.1) it follows that the function Z = ~CJ + B remains 
continuous during the passage across [a, c]. The last equation of (3.1) yields the follo- 

wing expression for B on[a, c]: 

Q _ i;z + E (G’ + Go’ - F.- G”‘) = 0 (3.2) 

Expressing the condition (1.6) on [c, b] in terms of Q and separating the complex con- 
jUgate, we again arrive at (3.2). Maintaining the same accuracy as in Sect. 1, we 

obtain for Q h 

$2 (z) = 2& s at 
X (t) (- eG”’ + ei?‘) - t-z 

a 

The condition on [c, b] yields for the function Z , in the same approximation, the 
Dirichlet problem independent of the point z = u 

Z +z zzz --EGo’.- EL;Q’ 

and its solution is given by the formula 
b 

1 
z= 

2ni 1/(z - c) (z - b) 
V Ct - c) (1 - “) (- EC - @j-L!&_ (3.5) 

In order for the solution (3.3)) (3.5) to have a physical meaning, we must have 

P.?z< 0, VZ E [a, c) 
pi2 (v = c) = 0 

(3.6) 
(3.7) 

When z - c + 0 , (3.7) follows from (1.2). When z - c - 0 , the stress pzz has a 
singularity of the order of (z - c)-“~ , with the concentration coefficient given by the 
real part of Kra from (1.7) in which ,a is replaced by c. It follows therefore that 
either b = c or c = a, (b). In the first case the whole crack is closed and from (3.6) 
it follows that 1 a 1 < I and 1 b 1 < 1. This case shall be omitted. 

When the point c lies on the line a, (b), the condition (3.6) can be verified di - 
rectly . The local state of stress at the left tip is transverse shear. The corresponding 
stress concentration coefficient is determined in terms of the function Q only, i. e. it 
does not depend on the point z = c. The quantity KIIa can be found from the imagina- 
ry part of the first formula of (1.7). The root of (2.1) determined by the condition 

Iul<h0Q gi ves the line a4 (b) on which KIIa = 0. It follows that the crack can- 

not cross this line. 
At the right tip z = b , the local state of stress in a combination of tension and 

transverse shear. The quantity KIb is given by the function Z, i. e. it does not depend 
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on the closed segment, and the formula for Krb is given by (1.7) in which a is re - 
placed by c., while c and b are connected by the following relation: 

c (c’ - 311‘9 
b= h2_3C2 

The quantity ICrIb. can be found from the imaginary part of the second formula of (1.7), 
and does not depend on the point z = c. 

If the condition of fracture hold at the left tip z = a, then the crack will propa - 
gate along its initial direction. If on the other hand the condition of fracture holds at 
the right tip z = b, then the crack will deviate from its initial direction. 

We can consider a symmetrical problem analogous to that discussed in Sect. 2. 
Then at the compressed tip we shall have pure shear, K& = 2K,ra. Pure tension will 
appear at the right free tip, and I~:,) = 2K,” . The quantity Krb is independent of 
the point z = a, i. e. the magnitude of the critical load and continued growth of crack 

in the direction of the free tip will depend only on the initial value of b. The growth, 

which may be unstable during the initial stage, will undoubtedly become stable. The 

compressed tip may approach asymptotically the line a4 (b) with the increasing load. 

4. Di#curtion of re,ults. Let us inspect the results obtained, in the light 
of the experimental data relating to the fracture of concrete. Let us quote briefly the 
necessary information concerning the fracture of concrete prisms under a central corn - 

pressive force [ll] . When the loads are small, the material shows isotropic and linear- 

ly elastic properties. At a certain value of the load (usually denoted by R,’ ) the 
microdefects which were present in the uncompressed sample, begin to grow. A large 

number of small cracks appears in the direction parallel to the applied load. Further 
increase in the value of the load is accompanied not so much by a growth of separate 
cracks, as by an increase in the number of the initial microcracks and by their stable 

growth. 
The sample reduces in volume linearly up to the level of R,“. Beyond the level 

ofR,” the volume decreases at a slower rate and reaches its minimum value under the 

load RTV . Beyond R,’ the volume begins to increase (due to the expansion of cracks) 

and, when the applied load is increased further, the microcracks develop into large 

size cracks and this leads to a disintegration of the sample when the load reaches the 
value R*. The numerical values of the parameters are R,” - (0.2-O.h)R,, R,” - 
(0.7-0.9)R,. 

It is evident that when the system of defects in the load - free case is not extensive, 
then the behavior of a crack during the initial stages of loading is determined by its 
interaction with the nearest inclusions. For this reason the results obtained above should 
be compared with experiment at the load levels of the order of R,“. When the loads 
are of the order of R,’ and higher, the stability of the system of cracks is determined 

by their interaction and a different type of approach becomes necessary. 
We see that the model discussed above has furnished us with two, basic, qualita - 

tive features ; the change from the unstable to the stable growth of cracks and the appea- 
rance of a minimum in the critical load curve physically equivalent to the parameter 
RTO. 

Using the concepts of similarity and the solutions obtained above, we arrive at the 
following formula for RT”, analogous to that given in [12] for composite materials: 
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Here k is a coefficient which depends on the ratio of the elastic moduli of the filler 
and the matrix, a denotes the concentration of the coarse filler and R is the charac- 
teristic dimension of the filler. 

Let us estimate the critical load for a typical crack. For the short length cracks 

(b - a 4 R) we Set b - a = 10-l mm, ~,s = 10-r kg2/ mm? 

E = I/,, (a” + ha)z / (R2 (a2 - h2) J6c) = 1. 
n 

This yields p = 7. kg/ mm< 
The value obtained exceeds the experimental value by two to three times. This 

can be explained as follows, First, only two nearest inclusions were taken into account 
and second, the parameter E reflects only the difference between the Poisson’s ratios 
while in a real material the shear moduli are also different and this leads to reduction 

in the value of the critical load. We should also note that the model in question can be 
used to provide an analytic explanation of the ultrasonic method of determining the 
point RTo [11] . 

The author thanks 0. Ia. Berg for the attention given and for valuable comments. 
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